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Note on the effect of surface tension on water waves 
at an inertial surface 
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This note is to show that in the presence of surface tension small progressive waves 
can always exist in water having an inertial surface composed of uniformly distributed 
floating particles, in contrast to the known result in the absence of surface tension 
that precludes propagation under a surface that is too heavy. 

It has been known for some time that infinitesimal time-harmonic progressive 
gravity waves of given angular frequency cannot propagate along the surface of an 
ideal liquid covered by a thin uniform distribution of non-interacting floating matter 
(broken ice, unstretched mat) if the layer, or 'inertial' surface, is too heavy. This 
differs from the result for a sufficiently light layer, when progressive waves are 
possible as for a free surface. Thus Peters (1950) and Weitz & Keller (1950) found 
that incident waves on a free surface might not be able to penetrate into an adjoining 
inertial surface for water of infinite and finite constant depth respectively. The 
purpose of this note is to remark on the interesting but apparently hitherto unnoticed 
fact that capillary-gravity waves can always propagate along any such surface layer 
without restriction ; thus the presence of surface tension, however little, is enough 
to ensure propagation. (The layer may also be thought of here as a stretched heavy 
membrane.) . 

The problem is formulated for small irrotational motion under the effects of both 
gravity g and surface tension T of an ideal liquid (water) of volume density p which 
has an inertial surface composed of a thin uniform distribution of disconnected heavy 
floating matter of area density pc, say. The special case of a free surface corresponds 
to c = 0;  and also in the absence of surface tension T = 0. Further, the motion is 
two-dimensional and time-harmonic of angular frequency (T, so may be described by 
a velocity potential of the form Re [$(x, y ) ~ ~ " ~ ]  at time t ,  where q5 is complex-valued 
and depends on Cartesian coordinates x measured horizontally along the equilibrium 
inertial surface and y measured vertically downwards into the liquid from that 
surface. The inertial surface has depression Re [ ~ ( z )  e-iut] from the equilibrium 
position, where 7 is also complex-valued. First the case of inJinite depth is taken. 

The basic linearized requirements to  be satisfied by q5 are that  it is the solution 
of Laplace's equation 

Vz$ = O  in y > O  

(continuity of mass in fluid region), subject to  boundary conditions on y = 0 and as 
y --f 00. The joint conditions relating 4, 7 a t  the inertial surface are the kinematic 
condition 

q5 = - .  .lay on y = O  
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(inertial-surface particles remain there) and the dynamic condition 

T 

P 
-iuq5 = g T + ( - i u ) 2 e ~ - - x x  on y = 0 

(equation of motion of inertial surface), in which the factor - iu corresponds to a time 
derivative ; elimination of 9 in these then gives the single inertiat-surface condition 

Kq5+(l-Ke)q5u+M&,uu = 0 on y = 0, 

where K = u2/g and M = T/pg are positive constants (the latter may be zero). The 
usual form is recovered by putting e = 0 (no layer), as also is that of Peters (1950) 
by putting M = 0 (no surface tension). The remaining boundary condition is 

IVq5l+O as y + c c  

(no motion at  infinite depth). 
Now, for 0 < Ke < 1 the inertial-surface condition has the form 

K*q5 + &, + M*q5uUu = 0 on y = 0, 

where K* = K / ( 1  - K E )  and M* = M / ( 1 -  Ke) are positive constants (the latter may 
be zero), so is merely a modification of the usual free-surface condition for e = 0, which 
certainly allows progressive waves. Thus the result for M = 0 may be extended. 
However, for Ke 2 1 the form is different and it might be expected that now no 
progressive waves are possible, as for M = 0 again. The results for M = 0 are those 
noted by Peters (1950) for an unstretched floating mat. 

If in general (i.e. for any Ke > 0) we look for a propagating solution satisfying the 
basic requirements in the form q5 = e c k y f i k X  we find from the inertial-surface 
condition that remains to be satisfied that the prospective wavenumber k > 0 must 
satisfy the cubic equation 

which is therefore required to have a positive root ; this is decided on by putting the 
equation in the form 1 - KE+ Mk2 = K / k  and considering the intersection of the 
graphs of the two functions on either side (parabola, hyperbola) : it is then evident 
that, provided M > 0 ,  these intersect at a point in k > 0 for all values of Kc 2 0, so 
there is indeed a positive root. Thus for infinite depth progressive waves can always 
exist under an  inertial surface in the presence of surface tension. This uniform result 
is exemplified for a wave source under an inertial surface in Rhodes-Robinson (1983) ; 
so also are the non-uniform results for M = 0,  when the wave number is k = K* for 
0 ,< K E  < 1 only. 

k ( l -Ke+Mk2) -K  = 0,  

Note that the phase speed c of the waves is given by 

u2 K g( l+Mk2)  
c2 = - = s = 

k2 k2 k ( l + k e )  

in terms of the wavenumber k. Also, if we consider the limit M + 0 ,  then for 
0 < K E  < 1 it is seen that k -+K/(l - K E )  so c2 + g( 1 - K E ) ~ / K ;  whereas for KE 2 1 
it is found instead that k -+ co in such a way that Mk2 + K E -  1 so c2 + 0. These two 
limits depend continuously on Ke and correspond to the values for M = 0 ,  when in 
the latter case there are no waves of course. 

We next note that the above result for infinite depth holds also for finite constant 
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depth h. The basic requirements on $ are now 

V 2 $ = 0  in O <  y <  h, 

K$+(l-Ke)$y+M$yyy = 0 on y = 0, 

$ y = O  on y = h  

(motion horizontal on bottom), and i t  follows again that progressive waves having 
the form $ = cosh k(h- y)ekikX can always propagate under an inertial surface for 
M > 0 ; for these 

k(l-Ke+Mk2) t a n h k h - K = 0 ,  
and - g( 1 + M k 2 )  tanh kh 

c -  
k( 1 + ke tanh kh)  ' 

For M = 0 there are again progressive waves for 0 < Ke < 1 and none for Ke 2 1, 
as noted by Weitz & Keller (1950) for floating ice. 

Moreover, these results for a single liquid with an inertial surface hold also for two 
superposed liquids of either infinite or equal finite constant depth and height (the latter 
having a horizontal bottom and lid) that are separated by an inertial interface, since 
each of these problems may be reduced essentially to one for a corresponding single 
liquid with an inertial surface exactly as for the free-surface problems in Rhodes- 
Robinson (1980). If the interfacial tension is T ,  the volume densities of the lower and 
upper liquids p,p'(O < p' < p ) ,  and the area density of the inertial interface (p -p ' )e ,  
say, then now 

for infinite depth and height and 

~ ( ~ - K K E + M ' ~ ~ ) - K '  = 0 

k(l-Ke+M'k2) tanh kh-K = 0 

for equal finite depth and height h,  where K = K(p +p ' ) / (p -p ' )  and M = T / ( p  - p ' )  g. 
For M' = 0 (no interfacial tension) there are progressive waves for 0 < KE < 1 only. 

I n  conclusion, we note that generalizations to three-dimensional motion can be 
made, involving for example axisymmetric cylindrical waves. 
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